LYCEE SECONDAIRE

9 AVRIL 1938 Sidi Bouzid Series:

3^{ème} année T & SC

Exercice Nº1

Pour
$$x \in 0, \frac{\pi}{2}$$
 On donne sinx= $\frac{\sqrt{5}-1}{4}$

- 1- Calculer cos2x
- 2- Vérifier que cos4x=sinx, En déduire x

Exercice N°2

- 1- Montrer que pour tout réel $x \neq \frac{k\pi}{2}$ on a :cotgx= $\frac{1+\cos 2x}{\sin 2x}$
- 2- En déduire la valeur de cotg $\frac{5\pi}{12}$
- 3- Soit f la fonction définie par : $f(x) = \frac{\sin 3x 2\sin 4x + \sin 5x}{\cos 3x 2\cos 4x + \cos 5x}$
 - a) Déterminer le domaine de définition de f
 - b) Simplifier le domaine de définition de f(x)
 - c) Résoudre dans IR puis dans $[-\Pi,\Pi]$ l'équation $f(x)=2+\sqrt{3}$
- 4- Résoudre dans IR l'équation : $(2+\sqrt{3})$ sinx-cosx=1

Exercice N°3

Soit f la fonction définie par $f(x) = \frac{1+2\cos 2x}{\sqrt{3}-2\sin x}$

- 1- Trouver le domaine de définition de f
- 2- Résoudre dans IR puis dans $[-\Pi,\Pi]$ l'équation f(x)=0
- 3- a) Montrer que pour tout x dans Df on a : $f(x) = \sqrt{3} + 2\sin x$
 - b) Déduire l'ensemble des solution de l'équation : $f(x)=2\sqrt{3}$
 - a) Déduire les réels de Df vérifiant $f(x)=f(\frac{\pi}{3}+x)$

Exercice N°4

- 1- Montrer que pour $x \neq (2k+1)\pi$, $k \in \mathbb{Z}$; on a : $tg \frac{x}{2} = \frac{sin x}{1+cos x}$
- 2- En déduire que tg $\frac{\Pi}{8} = \sqrt{2} 1$
- 3- a) Transformer en produit l'expression :cosx +cos3x
 - b) Résoudre dans IR l'équation : cosx+2cos2x+cos3x=0
 - c) Construire les points images des solutions sur le cercle trigonométrique
- 4- On pose $f(x) = \frac{\sin x + 2\sin 2x + \sin 3x}{\cos x + 2\cos 2x + \cos 3x}$
 - a) Déterminer le domaine de définition de f
 - b) Montrer que pour tout x dans Df on a : f(x)=tg2x
 - c) Résoudre dans IR, $f(x) = \sqrt{2}-1$

Exercice N°5

- 1- a) Vérifier que pour tout x réel on a : $\sqrt{3} \cos 2x \sin 2x = 2\cos(2x + \frac{\pi}{6})$
 - b) Résoudre dans IR puis dans $[0,2\pi]$ l'équation : $\sqrt{3}\cos 2x \sin 2x + \sqrt{3} = 0$
 - c) Placer les points images des solutions sur le cercle trigonométrique
- 2- On pose $f(x) = \sqrt{3} \cos 2x \sin 2x + \sqrt{3}$
 - a) Montrer que $f(x) = 4\cos x \cos(x + \frac{\pi}{6})$

b) Résoudre dans IR l'équation f(x)=0

Exercice N°6

- 1- Montrer que $\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$ et que $\sin \frac{\pi}{12} = \frac{\sqrt{6} \sqrt{2}}{4}$
- 2- Résoudre alors dans IR l'équation : $(\sqrt{3} +1)\cos x + (\sqrt{3} -1)\sin x = 2$

Exercice N°7

- 1- Montrer que pour tout x réel ona : $2\cos^2(x-\frac{\pi}{4})$ $2\sin x \cos x = 1$
- 2- a) Transformer sous la forme $rcos(x-\theta)$: l'expression $\sqrt{3}$ cos2x-sin2x
 - b) Résoudre alors dans IR puis dans $\left[-\pi,\pi\right]$ l'équation : $\sqrt{3}$ cos2x-sin2x=1
- 3- Soit $f(x) = \sqrt{3} 2[\cos^2(x \frac{\pi}{4}) + \sqrt{3} \sin^2 x]$
 - a) Montrer que f($\frac{\Pi}{2}$ +x)+f(x)=-2
 - b) Montrer que pour tout réel x on a : $f(x) = -\sin 2x + \sqrt{3} \cos 2x 1$
 - c) En déduire que $f(x)=1-4\sin^2(x+\frac{\pi}{12})$

Exercice N°8

Soient les fonctions $f(x) = \frac{-1 + 2\cos 2x}{1 + \cos 2x - \sqrt{3}\sin 2x}$ et $g(x) = \frac{1 + \sqrt{3}tgx}{2}$

- 1- a) Mettre $\cos 2x \sqrt{3} \sin 2x$ sous la forme $\cos (2x \theta)$
 - b) Résoudre dans IR puis dans $[-\pi,\pi]$ l'équation :1+cos2x $\sqrt{3}$ sin2x=0
- 2- Déterminer chacun des deux domaines de définition de f et g notés Df et Dg
- a) Montrer que pour tout x dans Df on a : $f(x) = \frac{\cos^2 x 3\sin^2 x}{2\cos x(\cos x \sqrt{3}\sin x)}$
 - b) En déduire que pour tout x dans Df on a : f(x)=g(x) puis déduire la valeur de tg $\frac{\Pi}{12}$
- 4- Résoudre dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ l'inéquation : g(x)≤0

Exercice N°9

- 1- On pose pour tout x réel , $f(x)=1+\cos 2x+\sqrt{3}\sin 2x$
 - a) Montrer que :2sin(x+ $\frac{\Pi}{6}$)= cosx + $\sqrt{3}$ sinx
 - b) En déduire que f(x)=4cosx.sin(x+ $\frac{\pi}{6}$),puis déduire la valeur de cos $\frac{\pi}{12}$
 - c) Résoudre dans IR puis dans $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ l'équation f(x)=0
- 2- Soit $g: \left[-\frac{\Pi}{2}, \frac{\Pi}{2}\right] \rightarrow IR \; ; x \mapsto \frac{1 + \cos 2x}{1 + \cos 2x + \sqrt{3} \sin 2x} \; ; \text{On pose E} = \left] -\frac{\Pi}{2}, \frac{\Pi}{2}\right[-\{-\frac{\Pi}{6}\}]$
 - a) Montrer que pour tout x dans E , $g(x) = \frac{\cos x}{2\sin(x + \frac{\pi}{6})}$. En déduire que
 - $\cot g \frac{\Pi}{12} = 2 + \sqrt{3}$ (On pourra exprimer de deux manières g($-\frac{\Pi}{12}$)
 - b) Résoudre dans IR l'équation : $(2+\sqrt{3})\cos x + \sin x = 0$
 - c) Résoudre dans IR l'inéquation : $(2+\sqrt{3})\cos x + \sin x > 0$